SPECIFICATION

Product Name STK5D4-361D-E

Case Outline : DIP(The dual in-line package) of the transfer full mold structure.

Functions : This "Inverter Power H-IC" includes the output stage of a 3-phase inverter, pre-drive circuits,

a bootstrap circuits, as well as protection circuits in one package.

Application: For 3-phase motor drive.

Features : Protective circuits including pre-drive low voltage protection is built in.

■ Direct input of CMOS level control signals without an insulating circuit is possible. Active HIGH)

■ A single power supply drive is enabled through the use of bootstrap circuits for upperpower supplies. (externally set)

■ Built-in simultaneous upper/lower ON prevention circuit to prevent arm shorting through simultaneous ON input for the upper and lower side transistors.

(Dead time is required for preventing shorting due to switching delay.)

■ The emitter line of each lower phase transistor is outputting to the external terminal(3 terminals). Therefore, by connecting shunt resistor outside, it is possible to the control which detects 3-phase current.

■ The substrate temperature monitor is enabled through the use of an internal thermistor.

Absolute Maximum Ratings/Tc=25°C

Parameter	Symbol	Remarks		Ratings	Unit
Supply voltage	Vcc	+ to U-(V-,W-), surge 500V *	*1	450	V
Collector-emitter voltage	VCE	+ to U(V,W) of U(V,W) to U-(V-,W-)		600	V
Output current	Io	+,U-,V-,W-,V,W terminal current		±10	A
Output peak current 1	Iop	+,U-,V,W-,V,V,W terminal current P:W=100us		±20	A
Output peak current 2	Iop2	U,V,W terminal current Tc=100°C 0.1Hz Duty 5% Sine wave current (Peak current value)		±18	A
Pre-driver voltage	VD1,2,3,4	VB1 to U, VB2 to V, VB3 to W, VDD to VSS	*2	20	V
Input signal voltage	VIN	HIN1, 2, 3, LIN1, 2, 3		0 to 15	V
FLTEN terminal voltage	VFLTEN	FLTEN terminal		20	V
RCIN terminal voltage	VRCIN	RCIN		20	V
ITRIP terminal voltage	VITRIP	ITRIP		5	V
Maximum power dissipation	Pd	IGBT / 1 channel		29.7	W
Junction temperature	Tj	IGBT, FRD		150	$^{\circ}\! \mathbb{C}$
Storage temperature	Tstg			-40 to +125	$^{\circ}\! \mathbb{C}$
Operating substrate temperature	Тс	H-IC case temperature		-20 to +100	$^{\circ}$ C
Tightening torque		A screw part	*3	1.0	N·m
Withstand voltage	Vis	50Hz sine wave AC 1 minute	*4	2000	VRMS

Reference voltage is "Vss" terminal voltage unless otherwise specified.

^{*1:} Surge voltage developed by the switching operation due to the wiring inductance between + and U-(V-, W-) terminal.

^{*2:} VD1=VB1 to U, VD2=VB2 to V, VD3=VB3 to W, VD4=VDD to Vss terminal voltage.

^{*3:} Flatness of the heat-sink should be lower than 0.15mm

^{*4:} Test conditions: AC2500V, 1 second

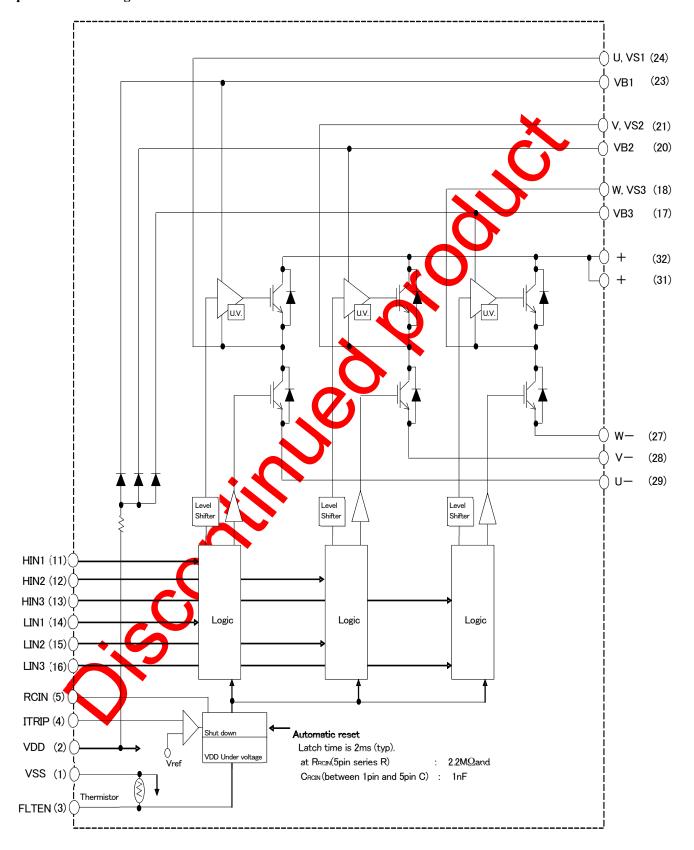
Electrical Characteristics (at Tc=25°C.VD=15V	Electrical	Characteristics	(at Tc=25°C VD=15V
---	------------	-----------------	--------------------

Parameter	Symbol	Conditions	Test circuit	MIN	TYP	MAX	Unit
Power output section							
Collector-emitter cut-off current	ICE	VCE = 600V	E:- 1	-	-	0.1	mA
Bootstrap diode reverse current	IR(BD)	VR(BD)	Fig.1	-	-	0.1	mA
Collector-emitter saturation voltage	VCE(SAT)	Io = 10A	Fig.2	-	1.9	2.7	V
Diode forward voltage	VF	Io = -10A	Fig.3	×	1.4	2.1	V
Junction to case	θj-c(T)	IGBT	-)	4.2	°C/W
thermal resistance	θj-c(D)	FWD	-	-	-	8.5	°C/W
Control (Pre-driver) section							
D. I.	T-	VD1,2,3 = 15V		_	0.07	0.4	
Pre-driver consumption current	ID	VD4 = 15V	Fig.4	1	1.6	4	mA
Input ON threshold voltage	Vinth(on)	TID II TID IO TID IO		1.5	2.1	2.5	V
Input OFF threshold voltage	Vinth(off)	HIN1,HIN2,HIN3, LIN1,LIN2,LIN3 to VSS	-	0.8	1.3	1.5	V
Input threshold voltage hysteresis	Vinth(hys)	LINI,LINZ,LINS to VSS	-	(0.5)	(0.8)	-	V
FLTEN terminal input electric current	IoSD	FAULT:ON/VFLTEN=0.1V	-	-	2	-	mA
FLTEN clearness delay time	FLTCLR	After each protection operation ending	-	ı	2	-	ms
Pre-drive power supply low voltage protection voltage	UVLO	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	10	ı	12	V
ITRIP threshold voltage	VITRIP	ITRIP(4) to VSS(1)	-	0.41	0.465	0.52	V
Resistance for substrate temperature monitors		Resistance between FLTEN(3) and VSS(1)	-	18.5	24.8	30.3	kΩ
Switching time	t ON t OFF	lo = 10A Inductive load	Fig.5	0.3	0.6	1.3 1.5	μs
Reverse bias safe operating area	RBSOA	10 = 20A , $VCE = 450V$	-	F	ull squa	re	-
Short circuit safe operating area	SCSOA	VCE = 200V	-	3	-	-	μs
Allowable offset voltage slew rate	dv/dt	Between U(V,W) to U-(V-,W-)	-	-50	-	50	V/ns

Reference voltage is "Vss" terminal voltage unless otherwise specified.

- 注記 1. 《Input ON threshold voltage》indicates a value to turn on output stage IGBT. 《Input OFF threshold voltage》indicates a value to turn off output stage IGBT. At the time of output ON, set the input signal voltage to Vinth(on)MAX to 15V. At the time of output OFF, set the input signal voltage to 0V to Vinth(off)MIN.
 - *1 : 《Input Threshold voltage hysteresis》 indicates a reference value based on the design value of built-in pre-driver IC.
 - 2. When the internal protection circuit operates, there is a "FLTEN" signal ON (When the "FLTEN" terminal is low level, "LTEN's signal is ON state: output form is open DRAIN) but the "FLTEN" signal does not latch. After protection peration ends, it returns automatically within typ 2ms and resumes operation beginning condition. So,after "FLTEN" signal detection, set OFF(LOW)to all input signals at once.

However, the operation of pre-drive power supply low voltage protection (UVLO: it has a hysteresis about 0.2V) is as follows.


Upper side : There is no "FLTEN" signal output, but it does a corresponding gate signal OFF.Incidentally, it returns to the regular operation when recovering to the normal voltage, but the latch continues while the input signal is ON (HIGH).

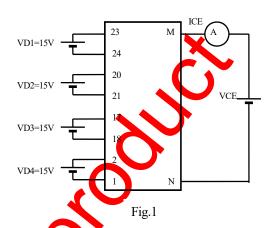
Lower side: It outputs "FLTEN" signal with gate signal OFF. However, it is different from the protection operation of upper side, it is automatically resets and resumes operation beginning condition when recovering to

- normal voltage. (The protection operation does not latch by the input signal.) 3. When assembling the H-IC on the heat sink, tightening torque range is 0.8N·m to 1.0N·m.
- 4. The pre-drive low voltage protection is the feature to protect a device when the pre-drive supply voltage declines with an operating malfunction. As for the pre-driver supply voltage decline in case of operation beginning, and so on, we request confirmation in the set.
- 5. When use the over-current protection with external resistor, please set resistance value so that current protection value becomes equal to or less than the double (2 times) of the rating output electric current (Io).

110425TI No.2

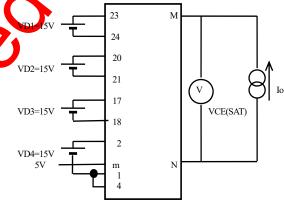
Equivalent Block Diagram

110425TI No.3


Test Circuit

(The tested phase : U+ shows the upper side of the U phase and U- shows the lower side of the U phase.)

■ICE / IR(BD)


	U+	V+	W+	U-	V-	W-
M	31,32			24	21	18
N	24	21	18	29	28	27

	U(BD)	V(BD)	W(BD)
M	23	20	17
N	1	1	1

■VCE(SAT) (Test by pulse)

	U+	V+	W+	U-	V-	W-
M		31,32		24	21	18
N	24	21	18	29	28	27
m	11	12	13	14	15	16

■VF (Test by pulse)

	U+	V+	W+	U-	V-	W-
M		31, 32		24	21	18
N	24	21	18	29	28	27

Fig.2

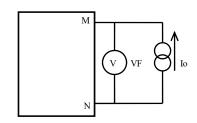
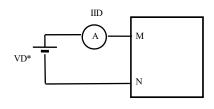
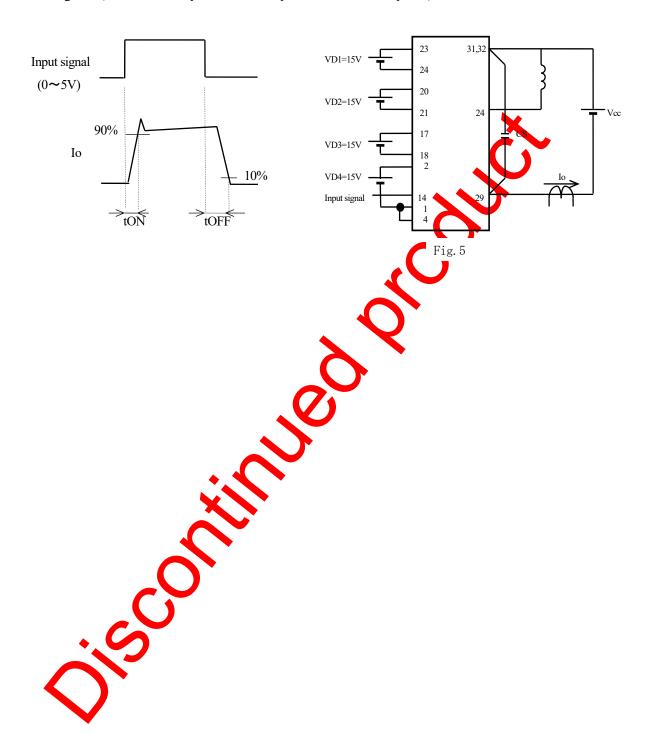
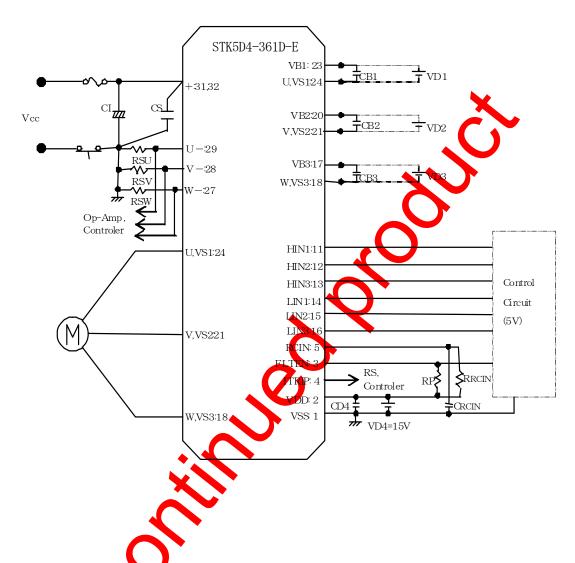


Fig.3

■ID

	V _D 1	V _D 2	VD3	V _D 4
M	23	20	17	2
N	24	21	18	1


Fig.4

018-11-0051

■ Switching time (The circuit is a representative example of the lower side U phase.)

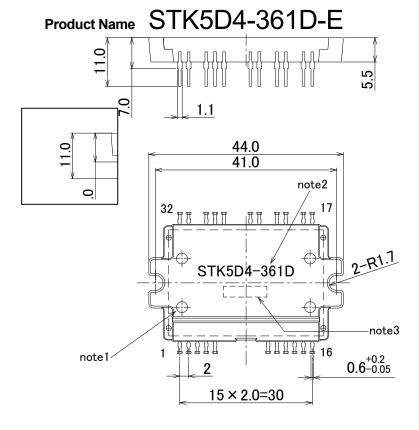
Sample Application Circuit

Recommended Operating Condition

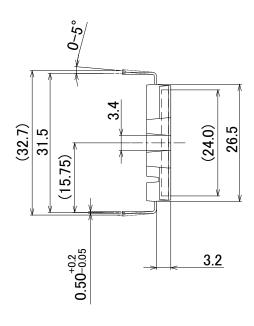
ommenaca Operaning yor	Idition						
			Min.			_	
Item	Item Symbol Conditions			MIN	TYP	MAX	Тур.
Supply voltage	VCC	+ to U-(V-,W-)		0	280	400	V
Pre-driver	VD1,2,3	VB1 to U,VB2 to V,VB3 to W		12.5	15	17.5	V
supply voltage	VD4	VDD to VSS	*1	13.5	15	16.5	V
ON-state input voltage VIN(ON) HIN1,HIN2,HIN3,			3.0	_	5.0	V	
OFF-state input voltage	VIN(OFF)	LIN1,LIN2,LIN3		0	_	0.3	V
PWM frequency fPWM				1	_	20	kHz
Dead time	DT	Turn-off to turn-on		1.5	_	_	μs
Allowable input pulse width	PWIN	ON and OFF		1	ı	_	μs
Mounting torque		'M3' type screw		0.8	_	1.0	N∙m

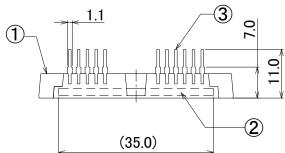
^{*1} Pre-drive power supply (VD4=15±1.5V) must be have the capacity of Io=20mA(DC), 0.5A(Peak).

Usage Precaution


- 1. This H-IC includes bootstrap diode and resistor. Therefore, by adding a capacitor (CB: about 1 to 47μF), a single power supply drive is enabled. In this case, an electric charge is charged to "CB" by making lower side IGBT turn on. And, please select the capacitance of "CB" (externally set) equal to or less than 47μF(±20%). If selecting the capacitance more than 47μF(±20%), connect a resistor (about 20Ω) in series between each 3-phase upper side power supply terminals(VB1,2,3) and each bootstrap capacitor. Also, the upper side power supply voltage sometimes declines by the way of controlling. Please confirm the voltage with an actual set. (When not using the bootstrap circuit, each upper side pre-drive power supply needs an external independent power supply.)
- 2. Because the jump voltage which is accompanied by the vibration in case of switching operation occurs by the influence of the floating inductance of the wiring of the outer power supply which is connected with of the "+" tenninal and the "U-"("V-", "W-") terminal, restrains and spares serge voltage being as the connection of the snubber circuit (Capacitor / CS /about 0.1uF to 10uF) for the voltage absorption with the neighborhood as possible between the "f" and the point of intersection of the "U-", "V-" and "W-" terminal, and so on, with making a wiring length (among the terminals each from "CI")short and making a wiring inductance small.
- 3. The "FLTEN" terminal (pins 3) is open Drain (It is operating as "FAULT" when becoming Low). This terminal serves as the shut down function of the built-in pre-driver. Please make pulling up outside so that "FLTEN" terminal voltages become more than 3V. (When the terminal voltage is above 3V,normalcy works, and it is shut down when it is equal to or less than 0.8V.) Moreover, thermistor built in between FLTEN(pins 3) and VSS(pins 1), so the substrate temperature can be monitored according to the voltage divided by the themistor and the pull-up resistor.
 - When the pull up voltage (VP) is at 5V, pull up resistor (RP) connects above $10k\Omega$, and in case of VP=15V, RP connects above $39k\Omega$.
 - The substrate temperature detection by the thermistor is for the substrate temperature monitor in the state of regular operation and not for protection of HIC over-temperature. Moreover at is not the one to momentary heating-up, and partial heating-up.
- 4. The pull-down resistor (:33k Ω (typ)) is connected with the inside of the signal input terminal, but please connect the pull-down resistor(about 2.2 to 3.3k Ω) outside to decrease the influence of the noise by wiring etc.
- 5. It is recommended the installation of the averturent protection circuit by the external shunt resistor as HIC protection at an abnormal current of the short-circuit etc. In that case, please select resistance so that the protection current value may become twice or less rated output current (Io).
 - For safety, recommend installation a fuse, and so on in the "Vcc" line.
- 6. Please be especially careful of the soldering of the motor connection terminal (pins 18,21 and 24), because the H-IC can be destroyed when this terminal is opened while the motor is running.
- 7. The "ITRIP" terminal (pins 4) is the input terminal of the built-in comparator. It can stop movement by inputting the voltage more than Vref (0.41V to 0.52V). (At the time of movement, usually give me it for the voltage less than Vref). Please use it as various protections such as the overcurrent protection (feedback from external shunt resistance). In addition, the protection movement is not done a latch of.
 - After the protection movement end, I become the movement return state after typ.2ms. Therefore, please do the protection movement detection of all input signals in OFF (LOW) promptly afterward.
- 8. When input pulse width is less than 1µs, an output may not react to the pulse.(Both ON signal and OFF signal)

The characteristic of thermistor is as follows.


Parameter	Symbol	Condition	Тур.	Unit
Resistance	R_{25}	Tc=25°C	$100 \pm 3\%$	$k\Omega$
Resistance	R ₁₂₅	Tc=125℃	2.52 +11.1%/-9.9%	$k\Omega$
B-Constant(25-50°C)	В		$4250 \pm 2\%$	K
Temperature Range			-40 to 125	$^{\circ}$ C


■ This data shows the example of the application circuit, does not guarantee a design as the mass production set.

Package Outline Diagram

missing pin: 6,7,8,9,10,19,22,25,26,30

note1:Mark of mirror surface for No.1 pin identification.

note2: The form of a character in this drawing differs from that of H-IC.

note3: This indicates the lot code.

The form of a character in this drawing differs from that of H-IC.

mm						
±0.5						
Don't scale this drawing.						
	016-11-0030					
	±0.5					

No.	Part Name	Material	Treatment
1	Case	EPOXY	
2	Substrate	IMST Substrate	
3	Lead Frame	Cu	Sn

Date	Revision	In charge	Approval

110425TI No. 8